Group actions on geodesic Ptolemy spaces
نویسندگان
چکیده
In this paper we study geodesic Ptolemy metric spaces X which allow proper and cocompact isometric actions of crystallographic or, more generally, virtual polycyclic groups. We show that X is equivariantly rough isometric to a Euclidean space.
منابع مشابه
ar X iv : 0 70 5 . 10 42 v 1 [ m at h . M G ] 8 M ay 2 00 7 NON - POSITIVE CURVATURE AND THE PTOLEMY INEQUALITY
We provide examples of non-locally compact geodesic Ptolemy metric spaces which are not uniquely geodesic. On the other hand, we show that locally compact, geodesic Ptolemy metric spaces are uniquely geodesic. Moreover, we prove that a metric space is CAT(0) if and only if it is Busemann convex and Ptolemy.
متن کاملActions of Certain Arithmetic Groups on Gromov Hyperbolic Spaces
We study the variety of actions of a fixed (Chevalley) group on arbitrary geodesic, Gromov hyperbolic spaces. In high rank we obtain a complete classification. In rank one, we obtain some partial results and give a conjectural picture.
متن کاملConvexity and Geodesic Metric Spaces
In this paper, we first present a preliminary study on metric segments and geodesics in metric spaces. Then we recall the concept of d-convexity of sets and functions in the sense of Menger and study some properties of d-convex sets and d-convex functions as well as extreme points and faces of d-convex sets in normed spaces. Finally we study the continuity of d-convex functions in geodesic metr...
متن کاملENTROPY OF GEODESIC FLOWS ON SUBSPACES OF HECKE SURFACE WITH ARITHMETIC CODE
There are dierent ways to code the geodesic flows on surfaces with negative curvature. Such code spaces give a useful tool to verify the dynamical properties of geodesic flows. Here we consider special subspaces of geodesic flows on Hecke surface whose arithmetic codings varies on a set with innite alphabet. Then we will compare the topological complexity of them by computing their topological ...
متن کاملTwo-orbit Manifolds with Boundary
In this article we are interested in the classification of some Lie group actions on differentiable manifolds. In full generality, classifying all actions of Lie groups is of course an unachievable task. Let us consider the case when there are very few orbits. The case of transitive actions is easily dealt with: the manifold is then a homogeneous space, and it is sufficient to give the stabiliz...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008